Constitutive repression and activation of auxin signaling in Arabidopsis.

نویسندگان

  • Hanbing Li
  • Yan Cheng
  • Angus Murphy
  • Gretchen Hagen
  • Tom J Guilfoyle
چکیده

Aux/IAA proteins are proposed to be transcriptional repressors that play a crucial role in auxin signaling by interacting with auxin response factors and repressing early/primary auxin response gene expression. In assays with transfected protoplasts, this repression was previously shown to occur when auxin concentrations in a cell are low, and derepression/activation was observed when auxin concentrations are elevated. Here we show that a stabilized version of the Arabidopsis (Arabidopsis thaliana) IAA17 repressor, when expressed constitutively or in a specific cell type in Arabidopsis plants, confers phenotypes similar to plants with decreased auxin levels. In contrast, a stabilized version of IAA17 that was converted to a transcriptional activator confers phenotypes similar to plants with increased auxin levels, when expressed under the same conditions in Arabidopsis plants. Free auxin levels were unchanged compared to control (DR5:beta-glucuronidase), however, in the seedlings expressing the IAA17 repressor and activator. These results together with our previous results carried out in transfected protoplasts suggest that the hormone auxin can be bypassed to regulate auxin signaling in a cell-autonomous manner in plants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis.

Lateral root formation in Arabidopsis thaliana is regulated by two related AUXIN RESPONSE FACTORs, ARF7 and ARF19, which are transcriptional activators of early auxin response genes. The arf7 arf19 double knockout mutant is severely impaired in lateral root formation. Target-gene analysis in arf7 arf19 transgenic plants harboring inducible forms of ARF7 and ARF19 revealed that ARF7 and ARF19 di...

متن کامل

TOR-Dependent and -Independent Pathways Regulate Autophagy in Arabidopsis thaliana

Autophagy is a critical process for recycling of cytoplasmic materials during environmental stress, senescence and cellular remodeling. It is upregulated under a wide range of abiotic stress conditions and is important for stress tolerance. Autophagy is repressed by the protein kinase target of rapamycin (TOR), which is activated in response to nutrients and in turn upregulates cell growth and ...

متن کامل

Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression.

In Arabidopsis, SHY2 encodes IAA3, a member of the auxin-induced Aux/IAA family. Gain-of-function mutations in SHY2/IAA3 cause enlarged cotyledons, short hypocotyls, and altered auxin-regulated root development. Here we show that the gain-of-function mutation shy2-2 decreases both the induction and repression of auxin-regulated genes, suggesting that SHY2/IAA3 acts as a negative regulator in au...

متن کامل

Constitutive Expression of OsIAA9 Affects Starch Granules Accumulation and Root Gravitropic Response in Arabidopsis

Auxin/Indole-3-Acetic Acid (Aux/IAA) genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs). Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III, and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified i...

متن کامل

Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling.

Under unfavorable environmental conditions, the stress phytohormone ABA inhibits the developmental transition from an embryo in a dry seed into a young seedling. We developed a genetic screen to isolate Arabidopsis thaliana mutants whose early seedling development is resistant to ABA. Here, we report the identification of a recessive mutation in AUXIN RESISTANT1 (AUX1), encoding a cellular auxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 149 3  شماره 

صفحات  -

تاریخ انتشار 2009